

    
      
          
            
  
Welcome to datesy’s documentation!

Datesy, making DATa handling EaSY – the intro to data handling in python



	Introduction
	Main Usage

	Motivation
	History

	Future Development





	Limitations





	The datesy package
	datesy.convert module

	datesy.inspect module

	datesy.matching module

	datesy.sort module





	Examples
	Installation/Usage

	Inspecting data




	Converting data
	Rows to dictionary
	Relevant ID position / main key position:

	Missing values
	Open ends / missing last row entries





	Selecting the header_line





	Dictionary to rows
	Missing keys / not set data
	Specify emtpy values:





	Ordering the header

	Data without main_key









	Matching data




	Sorting data








	Release Notes
	0.9.0

	0.8.1
	Bug Fixes





	0.8.0
	Features





	0.7.1

	0.7.0
	Features

	Bug Fixes
















Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Introduction

Making intro to data handling in python nice and easy!

The datesy package provides the conversion between the file types
as well as basic data inspection functions.

It is designed for an easy start into the python world and data handling in it without having to think of unnecessary basics.


Main Usage

Datesy, making DATa handling EaSY, is mostly helpful if you are looking for:


	inspecting complex data like searching for a path in a dictionary


	mapping strings and their properties







Motivation


History

The idea to this package came during the work as a consultant with a customer where lot’s of files needed
to be read, transformed, inspected etc. and no adequate tools besides searching & filtering with Excel of files partly in the range of GBs were around.

With starting to share the python insights and the code fragments, the only logical next step was do create a really reusable code fragment - a python package.




Future Development

The package is designed to be an easy start into data handling with python. Therefore, its desire is to take care of
standard tasks the programmer just does not want to think of but can concentrate on the actual tasks, the data handling.

Whenever there is a task that is done too often in data handling and inspection which can be taken care of in a standardized way,
this package will happily be expanded for enabling you to simplify your job.

If needed/desired, further datafile-formats will be supported for having a nice and standardized way of loading/writing those as well.






Limitations

This package is designed to be used by anybody who is new to python. Therefore functions are explicitly held limited to their magic and described accordingly.
There are few things really the big shit rather than simply helping with small tasks which you could have written yourself in a few lines of code but didn’t want to think about.
For deep data analysis other packages are far more powerful and maybe helpful to you. Think of datesy more of the little butler taking care of some basic tasks for you.

This package is compatible to PyPy [https://pypy.org]’s version 3.6.







          

      

      

    

  

    
      
          
            
  
The datesy package


datesy.convert module

All actions of transforming data from different file formats are to be found here


	
datesy.convert.rows_to_dict(rows, main_key_position=0, null_value='delete', header_line=0, contains_open_ends=False)

	Convert a row of rows (e.g. csv) to dictionary


	Parameters

	
	rows (list) – the row based data to convert to dict


	main_key_position (int, optional) – if the main_key is not on the top left, its position can be specified


	null_value (any, optional) – if an emtpy field in the lists shall be represented somehow in the dictionary


	header_line (int, optional) – if the header_line is not the first one, its position can be specified


	contains_open_ends (bool, optional) – if each row is not in the same length (due to last set entry as last element in row),
a length check for corrupted data can be ignored






	Returns

	dictionary containing the information from row-based data



	Return type

	dict










	
datesy.convert.dict_to_rows(data, main_key_name=None, main_key_position=None, if_empty_value=None, order=None)

	Convert a dictionary to rows (list(lists))


	Parameters

	
	data (dict) – the data to convert in form of a dictionary


	main_key_name (str, optional) – if the data isn’t provided as {main_key: data} the key needs to be specified


	main_key_position (int, optional) – if the main_key shall not be on top left of the data the position can be specified


	if_empty_value (any, optional) – if a main_key’s sub_key is not set something different than blank can be defined


	order (dict, list, None, optional) – if a special order for the keys is required






	Returns

	list of rows representing the csv based on the main_element_position



	Return type

	list(lists)










	
datesy.convert.pandas_data_frame_to_dict(data_frame, main_key_position=0, null_value='delete', header_line=0)

	Converts a single file_name from xlsx to json


	Parameters

	
	data_frame (pandas.core.frame.DataFrame) – 


	main_key_position (int, optional) – 


	null_value (any, optional) – 


	header_line (int, optional) – 






	Returns

	the dictionary representing the xlsx based on main_key_position



	Return type

	dict










	
datesy.convert.dict_to_pandas_data_frame(data, main_key_name=None, order=None, inverse=False)

	Convert a dictionary to pandas.DataFrame


	Parameters

	
	data (dict) – dictionary of handling


	main_key_name (str, optional) – if the json or dict does not have the main key as a single {main_element : dict} present, it needs to be specified


	order (dict, list, optional) – list with the column names in order or dict with specified key positions


	inverse (bool, optional) – if columns and rows shall be switched






	Returns

	DataFrame representing the dictionary



	Return type

	pandas.DataFrame










	
datesy.convert.xml_to_standard_dict(ordered_data, reduce_orderedDicts=False, reduce_lists=False, manual_selection_for_list_reduction=False)

	Convert a xml/orderedDict to normal dictionary


	Parameters

	
	ordered_data (orderedDict) – input xml data to convert to standard dict


	reduce_orderedDicts (bool, optional) – if collections.orderedDicts shall be converted to normal dicts


	reduce_lists (bool, list, set, optional) – if lists in the dictionary shall be converted to dictionaries with transformed keys
(list_key + unique key from dictionary from list_element)
if list or set is provided, only these values will be reduced


	manual_selection_for_list_reduction (bool, optional) – if manually decision on list reduction shall be used
all keys in reduce_lists will be automatically reduced






	Returns

	the normalized dictionary



	Return type

	dict












datesy.inspect module

All actions of inspecting data are to be found here


	
datesy.inspect.find_header_line(data, header_keys)

	Find the header line in row_based data_structure
NOT IMPLEMENTED YET: Version 0.9 feature


	Parameters

	
	data (list, pandas.DataFrame) – 


	header_keys (str, list, set) – some key(s) to find in a row






	Returns

	the header_line



	Return type

	int










	
datesy.inspect.find_key(data, key=None, regex_pattern=None)

	Find a key in a complex dictionary


	Parameters

	
	data (dict) – the data structure to find the key


	key (str, optional) – a string to be found


	regex_pattern (str, optional) – a regex match to be found






	Returns

	all matches and their path in the structure {found_key: path_to_key}



	Return type

	dict












datesy.matching module

All actions of mapping data to other data as well as the functions helpful for that are to be found here


	
datesy.matching.simplify_strings(to_simplify, lower_case=True, simplifier=True)

	Simplify a string, set(strings), list(strings), keys in dict
Options for simplifying include: lower capitals, separators, both (standard), own set of simplifier


	Parameters

	
	to_simplify (list, set, string) – the string(s) to simplify presented by itself or as part of another data format


	lower_case (bool, optional) – if the input shall be converted to only lower_case (standard: True)


	simplifier (str, optional) – the chars to be removed from the string. if type bool and True, standard chars _ , | \n ' & " % * - \ used






	Returns

	simplified values {simplified_value: input_value}



	Return type

	dict










	
datesy.matching.ease_match_similar(list_for_matching, list_to_be_matched_to, simplified=False, similarity_limit_for_matching=0.6, print_auto_matched=False)

	Return a dictionary with list_for_matching as keys and list_to_be_matched_to as values based on most similarity.
Matching twice to the same value is possible!
Similarity distance for stopping the matching is set by distance_for_automatic_vs_manual_matching.
Faster than datesy.matching.match_comprehensive but when having very similar strings more likely to contain errors.


	Parameters

	
	list_for_matching (list, set) – Iterable of strings which shall be matched


	list_to_be_matched_to (list, set) – Iterable of stings which shall be matched to


	simplified (False, "capital", "separators", "all", list, str, optional) – For reducing the values by all small letters or unifying & deleting separators separators
or any other list of strings provided


	print_auto_matched (bool, optional) – Printing the matched entries during process (most likely for debugging)


	similarity_limit_for_matching (float, optional) – For not matching the most irrelevant match which could exist






	Returns

	
	match (dict) – {value_for_matching: value_to_be_mapped_to}


	no_match (set) – A set of all values from list_for_matching that could not be matched















	
datesy.matching.match_comprehensive(list_for_matching, list_to_be_matched_to, simplified=False)

	Return a dictionary with list_for_matching as keys and list_to_be_matched_to as values based on most similarity.
All values of both iterables get compared to each other and highest similarities are picked.
Slower than datesy.matching.ease_match_similar but more precise.


	Parameters

	
	list_for_matching (list, set) – Iterable of strings which shall be matched


	list_to_be_matched_to (list, set) – Iterable of stings which shall be matched to


	simplified (False, "capital", "separators", "all", list, str, optional) – For reducing the values by all small letters or unifying & deleting separators separators
or any other list of strings provided






	Returns

	
	match (dict) – {value_for_matching: value_to_be_mapped_to}


	no_match (set) – A set of all values from list_for_matching that could not be matched















	
datesy.matching.match_similar_with_manual_selection(list_for_matching, list_to_be_matched_to, simplified=False, minimal_distance_for_automatic_matching=0.1, print_auto_matched=False, similarity_limit_for_manual_checking=0.6)

	Return a dictionary with list_for_matching as keys and list_to_be_matched_to as values based on most similarity.
All possible matches not matched automatically (set limit with minimal_distance_for_automatic_matching) can be handled interactively.
Similarity distance for stopping the matching is set by distance_for_automatic_vs_manual_matching.


	Parameters

	
	list_for_matching (list, set) – Iterable of strings which shall be matched


	list_to_be_matched_to (list, set) – Iterable of stings which shall be matched to


	simplified (False, "capital", "separators", "all", list, str, optional) – For reducing the values by all small letters or unifying & deleting separators separators
or any other list of strings provided


	print_auto_matched (bool, optional) – Printing the matched entries during process (most likely for debugging)


	minimal_distance_for_automatic_matching (float, optional) – If there is a vast difference between the most and second most matching value, automatically matching is provided
This parameter provides the similarity distance to be reached for automatically matching


	similarity_limit_for_manual_checking (float, optional) – For not showing/matching the most irrelevant match which could exist






	Returns

	
	match (dict) – {value_for_matching: value_to_be_mapped_to}


	no_match (set) – A set of all values from list_for_matching that could not be matched

















datesy.sort module


	
datesy.sort.create_sorted_list_from_order(order, all_elements=None, main_element=None, main_element_position=None)

	Create a sorted list based on the values in order based on the key values.

The function additionally allows to specify more elements for the sorted_list which don’t matter in terms of order.
Additionally, a main_element can be specified which has a leading position/is specified asides from order.


	Parameters

	
	order (dict, list) – the dictionary with the positions (keys) and elements (values)


	all_elements (list, set) – all the strings which shall be put in order.
if more keys in all_elements than in order: keys will be added in random order
if less keys in all_elements than in order: only the keys in all_elements will be returned, additional ones get deleted


	main_element (str) – the main_element


	main_element_position (int) – the position of the main_element






	Returns

	the sorted list with elements from all_elements and main_element



	Return type

	list















          

      

      

    

  

    
      
          
            
  
Examples


Installation/Usage

For installation run pip3 install datesy in terminal.

For using in Python3 script, import it at the beginning of the script:

import datesy

# your code
pass








Inspecting data

Check here all the examples for inspecting data
(coming soon)







Converting data

Check here all the examples for converting data



	Rows to dictionary
	Relevant ID position / main key position:

	Missing values
	Open ends / missing last row entries





	Selecting the header_line





	Dictionary to rows
	Missing keys / not set data
	Specify emtpy values:





	Ordering the header

	Data without main_key












Matching data

Check here all the examples for converting data
(coming soon)







Sorting data

Check here all the examples for converting data
(coming soon)










          

      

      

    

  

    
      
          
            
  datesy helps you to easily convert certain types of data.
Typical data formats are row-based or in form of a dictionary.


Rows to dictionary

When e.g. reading a csv_file as stated above, a row-based data structure is returned.
If for further processing the rows shall be dictionized, it’s as simple as this:

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12", "Value13"],
                ["Value21", "Value22", "Value23"]
               ]

example_rows = datesy.rows_to_dict(rows=example_dict)


example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header2": "Value12",
                     "Header3": "Value13",
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }






Relevant ID position / main key position:

It might occur, your most relevant key is not on the first position:

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12", "Value13"],
                ["Value21", "Value22", "Value23"]
               ]
example_dict = datesy.rows_to_dict(rows=example_rows, main_key_position=2)

example_dict = {
                 "Header3": {
                   "Value13": {
                     "Header1": "Value11",
                     "Header2": "Value12"
                   },
                   "Value23": {
                     "Header1": "Value21",
                     "Header2": "Value22"
                   }
                 }
               }





As you can see, the third entry (int=2) is used as the main_key.




Missing values

Of course, data may be missing a value:

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11",, "Value13"],
                ["Value21", "Value22", "Value23"]
               ]
example_dict = datesy.rows_to_dict(rows=example_rows, null_value="delete")

example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header3": "Value13"
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }





As you can see, the emtpy value in the rows is not represented in the dictionary.
Instead of missing the header_key you can also put any other value than delete to this parameter for putting this to the exact spot:

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11",, "Value13"],
                ["Value21", "Value22", "Value23"]
               ]

example_dict = datesy.rows_to_dict(rows=example_rows, null_value=None)

example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header2": None,
                     "Header3": "Value13"
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }






Open ends / missing last row entries

If the rows do not contain emtpy values at the end of the row:

Normally, a check prevents handling this data as row-based data should always have the same length.
Yet, if emtpy values at the end of the row are not stored like this, you can disable this check and still convert data:

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12"],
                ["Value21", "Value22", "Value23"]
               ]

example_dict = datesy.rows_to_dict(rows=example_rows, contains_open_ends=True)

example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header2": "Value12"
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }










Selecting the header_line

For irrelevant data at the top of the row-based data, you can set the header_line to the desired position:

example_rows = [
                ["Undesired1", "Undesired2", "Undesired3"],
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12", "Value13"],
                ["Value21", "Value22", "Value23"]
               ]

example_dict = datesy.rows_to_dict(rows=example_rows, header_line=1)

example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header2": "Value12",
                     "Header3": "Value13"
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }










Dictionary to rows

Just as simple is the converting vice_versa from dictionary to rows:

example_dict = {
             "Header1": {
               "Value11": {
                 "Header2": "Value12",
                 "Header3": "Value13",
               },
               "Value21": {
                 "Header2": "Value22",
                 "Header3": "Value23"
               }
             }
           }

example_rows = datesy.dict_to_rows(data=example_dict)

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12", "Value13"],
                ["Value21", "Value22", "Value23"]
               ]






Missing keys / not set data

When having data where certain keys are not set:

example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header2": "Value12"
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }

example_rows = datesy.dict_to_rows(data=example_dict)

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12", ],
                ["Value21", "Value22", "Value23"]
               ]






Specify emtpy values:

Of course you can specify values to be set if a key is not set/emtpy:

example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header2": "Value12"
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }

example_rows = datesy.dict_to_rows(data=example_dict, if_emtpy_value=False)

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12", False],
                ["Value21", "Value22", "Value23"]
               ]










Ordering the header

Just like picking the most relevant key in rows_to_dict, you can specify a certain order for the row-based data:

example_dict = {
                 "Header1": {
                   "Value11": {
                     "Header2": "Value12",
                     "Header3": "Value13"
                   },
                   "Value21": {
                     "Header2": "Value22",
                     "Header3": "Value23"
                   }
                 }
               }

example_rows = datesy.dict_to_rows(data=example_dict, order=["Header2", "Header3", "Header1"])

example_rows = [
                ["Header2", "Header3", "Header1"],
                ["Value12", "Value13", "Value11"],
                ["Value22", "Value23", "Value21"]
               ]








Data without main_key

What happens if you have data without a main_key like Header1 specified? Simply tell datesy about it:

example_dict = {
                 "Value11": {
                   "Header2": "Value12",
                   "Header3": "Value13",
                 },
                 "Value21": {
                   "Header2": "Value22",
                   "Header3": "Value23"
                 }
               }


example_rows = datesy.dict_to_rows(data=example_dict, main_key_name="Header1")

example_rows = [
                ["Header1", "Header2", "Header3"],
                ["Value11", "Value12", "Value13"],
                ["Value21", "Value22", "Value23"]
               ]











          

      

      

    

  

    
      
          
            
  
Release Notes


0.9.0


	
	separate package into

	
	datesy (actual data handling)


	fil_io (file loading/writing/selection)


	querious (SQL query helper)


	pythomy (pythonic MySQL interaction)















0.8.1


Bug Fixes


	sql_query: possible to use strings as values when using …where(column=value)









0.8.0

database connection: connect to a database and interact with it in a pythonic way


Features


	database abstraction available



	database


	table


	row


	item









	database interaction now possible for:



	mysql
















0.7.1

saving jsons: beautified to human readability & sorting keys available




0.7.0

initial release


Features


	reading/writing file types



	csv


	json


	xml


	xls(x)









	converting data types



	rows -> dict


	dict -> rows


	dict -> DataFrame


	DataFrame -> dict









	matching strings



	simplifying strings


	fast/considerate matching


	matching with manual selection














Bug Fixes


	initial release












          

      

      

    

  

    
      
          
            

   Python Module Index


   
   d
   


   
     		 	

     		
       d	

     
       	[image: -]
       	
       datesy	
       

     
       	
       	   
       datesy.convert	
       

     
       	
       	   
       datesy.inspect	
       

     
       	
       	   
       datesy.matching	
       

     
       	
       	   
       datesy.sort	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | E
 | F
 | M
 | P
 | R
 | S
 | X
 


C


  	
      	create_sorted_list_from_order() (in module datesy.sort)


  





D


  	
      	datesy.convert (module)


      	datesy.inspect (module)


      	datesy.matching (module)


  

  	
      	datesy.sort (module)


      	dict_to_pandas_data_frame() (in module datesy.convert)


      	dict_to_rows() (in module datesy.convert)


  





E


  	
      	ease_match_similar() (in module datesy.matching)


  





F


  	
      	find_header_line() (in module datesy.inspect)


  

  	
      	find_key() (in module datesy.inspect)


  





M


  	
      	match_comprehensive() (in module datesy.matching)


  

  	
      	match_similar_with_manual_selection() (in module datesy.matching)


  





P


  	
      	pandas_data_frame_to_dict() (in module datesy.convert)


  





R


  	
      	rows_to_dict() (in module datesy.convert)


  





S


  	
      	simplify_strings() (in module datesy.matching)


  





X


  	
      	xml_to_standard_dict() (in module datesy.convert)


  







          

      

      

    

  _static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to datesy’s documentation!
        


        		
          Introduction
          
            		
              Main Usage
            


            		
              Motivation
              
                		
                  History
                


                		
                  Future Development
                


              


            


            		
              Limitations
            


          


        


        		
          The datesy package
          
            		
              datesy.convert module
            


            		
              datesy.inspect module
            


            		
              datesy.matching module
            


            		
              datesy.sort module
            


          


        


        		
          Examples
          
            		
              Installation/Usage
            


            		
              Inspecting data
            


            		
              Converting data
              
                		
                  Rows to dictionary
                


                		
                  Dictionary to rows
                


              


            


            		
              Matching data
            


            		
              Sorting data
            


          


        


        		
          Release Notes
          
            		
              0.9.0
            


            		
              0.8.1
              
                		
                  Bug Fixes
                


              


            


            		
              0.8.0
              
                		
                  Features
                


              


            


            		
              0.7.1
            


            		
              0.7.0
              
                		
                  Features
                


                		
                  Bug Fixes
                


              


            


          


        


      


    
  

_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/up.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





